TECHNOLOGY FOR IMPROVED EDUCATION

RESULTS AND LEARNINGS FROM A PROJECT IN GUATEMALA (2019 - 2020)
AUTHORS AND PROJECT PARTNERS

The following people contributed to this report:

COMITANCILLO RESEARCH TEAM:
- Licda. Adelaida Paulina Salvador Agustín
- Ing. Luis Arturo Feliciano Cardona
- Lic. Francisco Mauricio Salvador
- PEM Eliseo Miranda Salvador
- PEM Luis Fernando Feliciano López
- PEPBI Yener Manuel Miranda Salvador

TIE PROJECT STAFF
- Lic. Rubén Feliciano, AMMID Coordinator
- Dr. Luis Javier Crisóstomo, Project Coordinator
- Darwin Gabriel Ramírez, (B.Ed.) Technical Facilitator
- Leonel López Pérez, (Education Diploma), Pedagogy Trainer

CHANGE FOR CHILDREN:
- Adrienne Wiebe, International Projects Manager
- Lorraine Swift, Executive Director
- Dinorah García, Graphic Designer

MINISTRY OF EDUCATION STAFF:
- Lic. Evelio Noé Fuentes López, Director Departamental de Educación de San Marcos
- Licda. Amilsa Yamileth Estrada Rodríguez, Coordinadora Distrital, municipio de Comitancillo
- Lic. Serapio Coronado y Coronado, Coordinador Distrital, municipio de Comitancillo
- Lic. Víctor Manuel Aguillon Crisóstomo, Coordinador Distrital, municipio de Comitancillo
- Lic. Lucio Joel García Juárez, Coordinador Distrital, municipio de Comitancillo

The “Technology for Improved Education” (TIE) project was a collaborative initiative of five key stakeholders:

- 60 Million Girls - developed the MLL and provided financing;
- Change for Children – managed overall project implementation and evaluation;
- Mundo Posible – configured RACHEL for the Guatemalan context and provided technical training;
- AMMID – managed project operations in the communities;
- Ministry of Education Municipal Coordinators – supported the engagement of local schools and advised on integration into existing education system.
This study examines the results of a Project using technology, Mobile Learning Labs (MLLs), to improve the quality of education for students in grades one to nine in ten rural indigenous schools in Guatemala. The MLLs consist of an off-line server (RACHEL) containing a digital library and educational resources which connects to a classroom set of tablets. The project was to be implemented over the course of two school years (January to October, 2019 and 2020). However, schools were closed in Guatemala in March 2020 due to the global COVID-19 pandemic. As a result, full implementation in the classroom occurred March, 2019 to October, 2019 and January to February, 2020 (10 months).

The Project theorizes that technology can build and strengthen the three key elements that lead to improved student learning: 1) accessible high quality content; 2) skilled teachers; and 3) engaged students. Qualitative and quantitative data collected in the project were assessed using a theoretical model for how student learning occurs with technology. Despite the truncated project implementation period, the Project deepens our understanding of the comparative advantages of using technology for education in the Global South.

The findings of this research study provided additional evidence and detail to the four critical contributions of technology to education recently identified (Brookings, 2020):

1. Scaling up standardized instruction
2. Facilitating differentiated instruction
3. Expanding opportunities for practice
4. Increasing learner engagement

It was found that “increasing learner engagement” (#4) and “expanding opportunities for practice” (#3) were of significant importance in the rural Guatemalan context. In this setting, increased “learner engagement” not only made learning more entertaining (i.e. with games and videos), but also more self-directed and student-centred, which led to increased self-confidence in the ability to learn and master skills and knowledge. Both students and teachers highlighted the extensive opportunities afforded by technology for additional “practice” of new subject matter (i.e. math formulas or new vocabulary) which can be individually-paced and reinforce new knowledge.

In addition, the study found evidence of four additional contributions of technology that need further examination:

5. Providing access to high-quality educational resources
6. Building teacher capacity
7. Developing digital literacy
8. Integrating family, community, and cultural perspectives and knowledge

“Access to resources” (#5), “learning technology skills” (#6), and “building teacher capacity” (#7) may seem overly obvious advantages of technology in education, however, these are extremely critical for marginal communities if students are to have the possibility of overcoming educational disparities. The strategies and tools required to strengthen these three contributions need to be researched further. There is also evidence that technology has unexplored potential for “integrating family, community, and cultural perspectives and knowledge” (#8) into education, particularly in remote, small-language groups which often have orally-based knowledge that is transmitted to the next generation through experiential learning.

A comparison of student performance in 10 intervention and 10 control schools on Standardized National government pre and post-tests did not show a statistically significant difference in outcomes after eight-months (March – October, 2019). Analysis of the data collected and the existing research in other similar project, suggests that a single school year is too short a period to demonstrate significant improvements in student learning outcomes.

Recommendations for further research:
- Utilize context-specific learning outcome evaluations rather than standardized national tests to assess student learning results;
- Investigate further the differential experiences of girls and boys in the use of technology;
- Undertake a longitudinal study which follows the experience and learning results over the course of at least three-years of full implementation.
Despite the expectation in the past few decades that technology would be able to improve the quality of education for children and youth around the world, and would help achieve "inclusive and equitable quality education for all (Sustainable Development Goal 4) by 2030, the results have not met expectations. In a recent review of the research evidence (2020), the Brookings Institution concluded the following:

"...in spite of the relentless optimism that has characterized the movement for education technology, its results have been mostly disappointing...Most notably, evidence from randomized experiments, which are designed to estimate the causal effect of programs and policies, suggests that merely equipping a school or a student with hardware (e.g. tablets, laptops, or desktop computers), has had little effect on student learning...Educational software that allows students to practice what they learned at school has been slightly more successful, but is has largely had modest effects...In short, the potential of education technology has not yet been realized."

Nevertheless, the Brookings study identified four potential comparative advantages of technology to improve learning outcomes, based on reviews of the most rigorous evidence available on interventions from developing countries. These following four critical contributions of technology are illustrated in Graphic 2 (Source: Brookings, 2020, p.29).

1. Scaling up standardized instruction through distance education and pre-recorded lessons;
2. Facilitating differentiated instruction through live one-on-one tutoring and computer-adaptive learning;
3. Expanding opportunities for practice through practice exercises;
4. Increasing learner engagement through such things as video tutorials and games/gamification.

This model provides a framework to organize and explore the data gathered and the lessons learned from the Guatemala Project. The data collected in this pilot will provide additional evidence regarding the critical contributions of technology already identified, as well as contribute new elements and critical points where technology can support improved student learning in the context of marginalized schools in remote, indigenous communities.
Overall, Guatemala has made significant progress in educational accessibility and attendance in the last 25 years. From 1990 to 2015, the average number of years of schooling per person more than doubled from 3.1 years to 6.3 years. The expected years of schooling for students beginning school increased from 6.5 in 1990 to 10.7 in 2015. However, in many countries, these overall positive numbers conceal two major challenges in the drive towards inclusive and equitable quality education for all: geographic and gender inequalities, and the poor quality of much of the instruction.

The urban-rural inequalities in terms of educational quality and completion rates are considerable. While the national average in Guatemala is now 6.3 years of schooling, in rural areas this drops to only 3.7 years. Drop-out rates are higher in rural and indigenous communities where students often leave school due to poverty. About 60% of Guatemalans live on less than $4 US per day and 40% on less than $2.5 US per day. Of those living with poverty, 52% are indigenous.

The quality of education in Guatemala is generally poor: a recent (2017) study revealed that the majority of graduating secondary students in Guatemala did not pass the achievement exams for math (92% failed) and language (75% failed) the first time they wrote the tests. An international comparative study (2018) indicated that in Guatemala, student performance in reading and mathematics is among the lowest in Latin America, with 70% of students below average performance in reading and 89% in mathematics. Inadequate teaching materials and resources and a lack of on-going teacher training and support, particularly in rural and indigenous communities, are identified as the primary causes of these learning deficiencies.

The Municipality (county) of Comitancillo, where this project was implemented, has characteristics typical of communities in western Guatemala. The population identifies as 99% Mam, one of the 31 Maya language groups in Guatemala. Comitancillo has a population of 60,000 people in an area of 113 sq. kilometers, which results in a high population density of about 530 people per sq. km. The local economy is based on subsistence and small-scale farming in this agriculturally-marginal mountainous terrain. Household economies are supplemented by labour migration within Guatemala and to the USA. The community rates high on national indexes of food insecurity and occupational precariousness.
Ten schools were selected to participate in the project based on the following criteria:

- Public primary and junior high schools in rural communities (i.e. not in the town centre) with primarily subsistence farming, low household incomes, and high rates of out-migration for work;
- Geographically dispersed in the municipality; representing all geographic sectors;
- A mix of schools with single grade classes and multi-grade classes;
- Proactive Mam-Spanish teachers;
- Schools without much support from other organizations nor technology;
- A school principal who was open to innovation and had effective leadership abilities;
- Good communication between school staff and local community leaders.

Using these criteria, 10 schools were selected for the MLL intervention. (Table 2 and Map p. 8). The 10 schools with MLLs employed 87 teachers and had 1,638 students in all grades during the 2019 school year. There is an average of 19 students per teacher in these schools.

TABLE 2: PARTICIPATING SCHOOLS

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>Number of students</th>
<th>Number of teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EORM* San Isidro</td>
<td>330</td>
<td>16</td>
</tr>
<tr>
<td>2. EORM Cuatro Caminos</td>
<td>205</td>
<td>10</td>
</tr>
<tr>
<td>3. EORM El Paraíso</td>
<td>170</td>
<td>10</td>
</tr>
<tr>
<td>4. EORM Villa Nueva</td>
<td>51</td>
<td>4</td>
</tr>
<tr>
<td>5. EORM La Florida</td>
<td>131</td>
<td>9</td>
</tr>
<tr>
<td>6. EORM Chamaque</td>
<td>270</td>
<td>16</td>
</tr>
<tr>
<td>7. EORM San Pablo</td>
<td>182</td>
<td>9</td>
</tr>
<tr>
<td>Junior High Schools (Grades 7-9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Taltimiche</td>
<td>160</td>
<td>7</td>
</tr>
<tr>
<td>9. Tele-secondary Tuixoquel</td>
<td>62</td>
<td>3</td>
</tr>
<tr>
<td>10. Tele-secondary Canoa de Sal</td>
<td>77</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,638</td>
<td>87</td>
</tr>
</tbody>
</table>

*EORM = Official Mixed [Gender] Rural School

Mundo Posible provided orientation and training sessions for all participating school staff, Ministry of Education Supervisors, and project staff. In addition, Mundo Posible set-up the MLLs in each school and trained school staff to manage and maintain the equipment. In each school, a technology commission was organized to schedule the use of the equipment, streamline teaching activities, provide support for equipment maintenance, and maintain communication with the Project’s technical team about technical applications.

Throughout the first year (March-October, 2019), joint monthly workshops were held for principals and teachers from all schools to continue to train teachers on how to use the RACHEL content for lesson planning, content, educational resources, and learning strategies.

In addition, the two full-time staff, a pedagogy trainer and a technical facilitator, visited each school for one day each week to provide individual and group training to teachers and to work alongside teachers in their classes. The project staff also led a process of collecting additional contextually-specific educational content to upload to the RACHELs.

In the second year of the project, (2020), implementation was disrupted in March by the closure of schools due to the COVID-19 pandemic. In-classroom instruction and support for the use of the MLLs ended in March. However, the project staff continued to work for several more months, conducting interviews for the second phase of the qualitative research, preparing the research report, and compiling and uploading additional information and resources on the RACHELs.
The Research Team consisted of six school directors and educators with both educational practice and research experience. This team designed and conducted the research study with the support of the project staff and the advisory input of the five local education supervisors for the Ministry of Education.

A mixed methods approach with both quantitative and qualitative data was utilized in order to measure learning progress as a result of the introduction of MLLs and to deepen understanding of the experience of teachers and students with the technology. Research was conducted in two phases:

1) Phase 1 (2019): A quantitative study of pre-tests and post-tests in intervention and control schools over the course of the 2019 school year (January-October) with qualitative data through focus groups with teachers and students, and systematic classroom observations;

Phase 1: Quantitative and Qualitative Data Collection

The quantitative study focused on student learning in mathematics and reading in grade six and seven. Control schools were identified which had characteristics and contexts similar to those of the intervention schools (Table 3 and Map p. 8.). Pre and post-tests to measure mathematics and reading performance were administered near the beginning of the school year in February 2019 and at the end of the school year in October 2019. The test data was analyzed to determine any changes in student performance and whether there was a statistically difference between the intervention and control groups.

TABLE 3: INTERVENTION AND CONTROL SCHOOLS

<table>
<thead>
<tr>
<th>Intervention Schools</th>
<th>Control Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Schools</td>
<td></td>
</tr>
<tr>
<td>1. El Paraiso</td>
<td>Chiquila Buena Vista</td>
</tr>
<tr>
<td>2. Villa Nueva, Tulelén</td>
<td>La Puerta, Tulelén</td>
</tr>
<tr>
<td>3. San Pablo</td>
<td>Unido La Esperanza, Los Bujes</td>
</tr>
<tr>
<td>4. Chamaque</td>
<td>Sabalique</td>
</tr>
<tr>
<td>5. ELa Florida, Piedra De Fuego</td>
<td>La Reforma</td>
</tr>
<tr>
<td>6. San Isidro</td>
<td>Tuiscoquel</td>
</tr>
<tr>
<td>7. Cuatro Caminos</td>
<td>La Puerta, Tumuj</td>
</tr>
<tr>
<td>Junior High Schools</td>
<td></td>
</tr>
<tr>
<td>8. Taltimiche, Basico</td>
<td>Chixal, Basico</td>
</tr>
<tr>
<td>9. Telesecundaria de Tuiscoquel</td>
<td>Telesecundaria de San Isidro</td>
</tr>
<tr>
<td>10. Telesecundaria Canoa de Sal</td>
<td>Telesecundaria Tojcheche</td>
</tr>
</tbody>
</table>

The total number of grade six and seven students was 512 in the 20 schools in 2019. 269 in the intervention schools and 243 in the control schools. A sample size of 200 students was selected from the 20 schools; that is, a random sub-sample of 10 students (5 girls and 5 boys) were selected from each of the 20 schools. A total of 193 students completed the pre-test and 192 students completed the post-test.

Standardized national tests of the Ministry of Education were used to evaluate student performance based on the learning objectives of the national curriculum for grades six and seven. The tests were comprised of forty questions in each subject. The reading test measured abilities such as knowledge, recall, usage, comprehension, and analysis. The math test measured such subject areas as probability, geometry, patterns, sets, fractions, decimals, percentages, and problem solving. The test results were graded manually and electronically, and then the data was analyzed using a statistical software program by the research team.

The research team designed instruments to collect information related to the perception of teachers and students about the use of technology in the classroom consisting of a 7-question questionnaire for each group. Quantitative data was analyzed with the theoretical framework focused on “six core investigative criteria (Situation Specificity, Cultural Sensitivity, Practical Usability, Theoretical Applicability, Economic Scalability, and Viable Sustainability)” (Kim, 2009, p. 416). The framework has shown to be effective in studying literacy learning of migrant children through MLLs in Latin America, and is applicable in this context due to similarities of context and intervention. Data collected in the teacher and student questionnaires was collated and analyzed by the research team to identify key findings and areas for further investigation.

Phase 2: Additional Qualitative Data Collection, June-August, 2020

In order to delve more deeply into the perceptions and experiences of the student and teacher participants, a second phase of qualitative data collection was undertaken in 2020. In June and July 2020, semi-structured interviews were conducted with Pedagogical Advisors, school principals, teachers, and students of grade six and seven. A stratified sample of participants was selected for interviews because this allowed for representation of each sub-population: students, teachers, and school principals. Twenty-five students, ten teachers, and five school principals and administrators were selected from among the ten intervention schools with 50% female and 50% male participants. In addition, interviews were conducted with three pedagogical advisors of the Ministry of Education who were closely involved with the participating schools.
The findings corroborated and further nuanced the four comparative advantages of education technology identified in the Brookings review (2020). In addition, four new advantages or key intervention points emerged from the Project in Guatemala. The findings are illustrated in Graphic 4.

FINDINGS

01. SCALING UP STANDARDIZED INSTRUCTION

Both students and teachers valued the instructional videos and audio files that provided standardized teaching of basic concepts, particularly for math and sciences. The Khan Academy instructional videos were referenced by 80% of students and 100% of teachers as effective tools for supporting student learning.

“I have a student who has difficulties with the math course; she has a hard time doing the exercises. However, when we started using the technology, it was amazing what happened. First, we turned on the tablets and connected to RACHEL. Then, I shared the instructions. We watched a video about a mathematical operation. Next, exercises were assigned. I left them to work alone for a while. When I returned to the classroom, the surprise that I got was that the student had solved the exercises without any difficulty. Incredible but true.” - Teacher, Chamaque Primary School

“The videos on RACHEL are very good, because they help me to learn how to add, subtract, multiply, and divide.” - Student, Grade 6, Cuatro Caminos Primary School

The standardized lessons help in several ways. They enable students to repeat the lesson if they did not understand it the first time the teacher explained it. They overcome any deficiencies in the individual teachers’ presentation of the topic, as not all teachers have the knowledge or ability to clearly teach all subject matter. Finally, the videos are particularly valuable to students who learn better through visual, auditory, and kinesthetic means.

When questioned specifically about learning math and reading, 40% of students indicated that the MLLs facilitated “standardized instruction;” in other words, the MLLs helped to explain and clarify concepts they had learned in class.

Teachers reported frequently using the MLLs to facilitate Mathematics or Spanish language instruction. Students’ ability to read was advanced through instruction videos, explanatory exercises, and reinforcement exercises. The teachers indicated that the most useful didactic applications on the RACHELS were: Khan Academy, Wikipedia, Guatemalan Educational Collection, Aprendiendo Matemática [Learning Mathematics], and Aprendiendo Inglés [Learning English].

“The tablet is an educational tool where you get the most out of the classes; it facilitates proper content for teaching and contains educational games.” - Teacher, San Isidro Primary School

This finding agrees with results of two evaluations in 2016 of the use of Khan Academy educational videos to support math instruction. A study in the Municipality of Sacatepéquez, Guatemala found that “combining technology with Khan Academy produces a higher positive effect on math performance….Relative to the comparison group, the pilot intervention leads to an average increase of 10 points in math scores out of a possible score of 100 points.”

In Liberia, an evaluation of an afterschool program using Khan Academy mathematics programs found that while quantitative results after one year were mixed, there was evidence of generally more improvement in performance among the pilot group.

Two of the three Junior High Schools in the Project (Tuixoquel and Canoa de Sal) are tele-secondary schools; that is, they use distance education through radio and television, with one or two teachers in person to assist students. These schools find the resources on the RACHEL to be an extremely valuable supplement to the national curriculum.

“The RACHEL allows us to do summaries, watch videos about human anatomy and learn about the processes of human reproduction. It does allow us to obtain better information through images and videos.” - Student, Canoa de Sal, Tele-secondary School

“Students learn best by seeing and doing themselves. The MLL is a research tool that enriches contents, provides definitions and concepts of topics that are not included in the text that teachers use, and helps to reaffirm learning.” - Teacher, Canoa de Sal, Tele-secondary School
The findings from the Project strongly substantiated the use of education technology for facilitating differentiated instruction tailored to the specific needs of each student; in other words, boosting student-centered learning. This included facilitating individually-paced learning, project-based learning, and different learning styles. Teachers used the MLLs to diversify their teaching strategies. With support from the project staff, the teachers learned ways to utilize the MLLs to create the setting for learning in groups, pairs, and individually.

"The boy or the girl has the technology in his/her hands and can research a subject or word that they do not understand." - Teacher

"The RACHEL helps a lot: it permits the completion of work in group and individual forms, and offers the opportunity for students to do presentations on school assignments, and to do reading in different formats, among other things." - Teacher

"It provides a diversity of resources for learning in different forms of group organization. Students learn more quickly, and helps to understand the different types of learning styles." - Teacher

This is verified by 83% of the students who reported that the MLLs enabled diverse forms of organization in the classroom; working in groups, pairs, or individually; rather than the traditional teacher-lecture format.

Numerous students highlighted the visual and auditory ways of learning that the MLLs offered. Traditional teaching strategies which are based on teacher lectures and students copying and memorizing continue to predominate in classrooms in Comitancillo. These traditional methods do not necessarily respond to the individual learning styles of all students. The MLLs presented some alternatives. About 20% of students highlighted that the MLLs facilitated "learning by seeing," through videos, images, graphics, pictures, and games, and "learning by hearing," through listening to books read aloud, to presentations, and to music; which they reported enabled them to learn new concepts more quickly.

The majority (80%) of teachers felt that the most valuable contribution of the MLLs was that they generated opportunities for students to learn on their own on topics that interest them in fun ways.

"Having a tablet in his or her hands, the student has the opportunity to choose the educational theme in the area in which they are interested and can navigate that with RACHEL." - Teacher

"The MLL generated confidence in the students to utilize the technology for their own learning." - Teacher

Both students and teachers highlighted the extensive opportunities afforded by technology for additional ‘practice’ of new subject matter (i.e., mathematical operations, reading vocabulary, and grammatical structures) which can be individually-paced and reinforce new knowledge. In Comitancillo, the most common pattern is that class time is primarily dedicated to lecture, in which the teacher explains the topic and the students passively copy explanations from the blackboard. As students focus on writing in their notebooks, they may have difficulty absorbing the content. There is little time for students to grasp new concepts or to gain confidence through practice, before a new topic is introduced.

During the Project, project staff encouraged teachers to use the MLLs to offer students the opportunity to practice what they had learned in class so that students could confirm if they had understood correctly, and then repeat the exercise until they were confident in their learning. Students reported that the MLLs enabled them to practice and reinforce math and language concepts that they had learned from the teacher in the class (65%) and to better understand subject matter that had been presented in the class (35%).

"The use of the tablets helps us practice [what we learned in] our lessons through games and videos… You can take videos on the phone to review at home." - Student, Grade 6, Villa Nueva

"When learning math and reading in Spanish, the RACHEL provided tools to practice the writing of the word, correctly using punctuation marks; and to perform different mathematical operations. Using RACHEL, we practiced spelling words correctly, where to put punctuation; identifying numbers with denominators, heterogeneous and compound numbers. It helps us practice multiplication and division, and analyze prime and composite numbers." - Student, Grade 7, Chamaque

"With RACHEL, the students individually or in pairs watch videos of how to carry out mathematical processes and practice the different exercises. In reading, the students have the opportunity to read the same text, where the teacher puts into practice the guided reading, and also evaluates them with questions that each story or text contains." - Teacher, Villa Nueva Primary School

Research has shown that student learning is improved by how much they engage in “deliberate practice.” Deliberate practice is not the same as rote repetition. Rote repetition is simply repeating a task, which will not by itself improve performance. Deliberate practice involves attention, trial and repetition and leads to new knowledge or skills that can later be developed into more advanced knowledge and skills. Thus the opportunities for deliberate practice offered by the MLLs are particularly important to student acquisition and command of new knowledge and skills.
In the Project it was clear that "learner engagement" not only involved more entertaining and interactive ways of learning (i.e. games and videos), but also more self-directed and autonomous opportunities driven by individual student interest. Both students and teachers highlighted the ways in which the MLLs motivated learning.

"I was very surprised when I heard about RACHEL. And, when it finally arrived in my little school, I was very happy. When I used it for the first time, it was very interesting and I learned a lot. It has been a good experience to use the technology... It has been fun because it contains educational games and interesting videos. I confess that before we had RACHEL, classes were a little boring, but now with the presence of the technology, classes have become fascinating, very interesting, and more engaging."

- Student, Grade 7, Taltimiche

"When students look at the calendar for using the RACHELS, they are motivated and always ready to enter the RACHEL classroom and acquire new learning. They never miss a class."

- Teacher, La Florida Primary School

"RACHEL taught me many things. Before we had RACHEL, it was boring in the daily classes. But when RACHEL came, we all had fun while we learned, because there are songs, videos, and applications to develop reading and math knowledge. I learned to read through reading on RACHEL, and also to correctly write words."

- Student, Grade 6, San Pablo

"In the sixth grade class, what is interesting is the interest and dedication of the students when working with RACHEL. When they realize that it is time to work with RACHEL, they jump for joy because, then, a different environment is presented. When prompted to research a topic, they take the time and start browsing all over RACHEL. Everything is different when using RACHEL, because they enjoy working with technology and have the opportunity to interact with technology."

- Teacher, Cuatro Caminos Primary School

"Using RACHEL has motivated me to learn new things like tablet applications and with the teacher’s help it has piqued my interest in exploring the virtual library. Tablets also contain games, educational videos and these resources help us to think differently. Now our classes are not boring. Also, as a student, I have improved my participation in the classes, thanks to RACHEL."

- Student, Grade 6, La Florida

However, "learner engagement" went beyond just making learning "fun"; with the MLLs students could unlock and develop their own innate curiosity and motivation to learn. Students strongly felt that the MLLs supported increased learner engagement in their own learning; not as much through games and video tutorials, although some (10%) of students did report that the visuals and games were motivating. Rather, the majority of the students felt the MLLs increased engagement through offering opportunities for self-directed learning (38%), and enabling students to build self-confidence in their understanding of concepts and content (25%). Unfortunately, 25% of students felt that the MLLs were not used to increase learner engagement, but rather, were merely a substitute for traditional teacher lectures and hardcopy texts and worksheets.

The teachers also noted that in addition to the novelty of learning with technology, the MLLs enabled students to engage more directly in their own learning. They felt that the MLLs enabled students to generate new ideas, pace their own learning, and to explore new ideas and subjects of individual interest.

"The content on RACHEL allows students to obtain more extensive knowledge; RACHEL presents several sources of information, facilitates many ways of learning, provides access to extensive content, and creates interest in children in their own learning."

- Teacher, El Paraíso Primary School

"Being a teacher... what I like to see the most is that in the mathematics course the atmosphere in the classroom has changed from being tedious and uninteresting to being dynamic and participatory. Now students participate in group work and demonstrations; they have greater autonomy and motivation to learn and practice mathematics content."

- Teacher, Taltimiche Junior High School

The students indicated that the activities they liked to do best on the RACHELS were to:

- Explore information on topics of interest;
- Access multimedia information, such as videos;
- Find content to analyze and discuss in class;
- Practice exercises to reinforce new knowledge and skills.

"I like to investigate, summarize, copy, display, use comparison charts, maps, group work, videos of science and stories."

- Student, Grade 6, Villa Nueva
05. PROVIDING FREE ACCESS TO HIGH-QUALITY EDUCATIONAL RESOURCES

Most obviously, the MLLs provide access to educational resources, libraries, and reference materials in schools and communities that have limited resources. In communities without libraries or readily available internet connections, the RACHEL provides access to extensive libraries and reference materials, covering all subject material with textual as well as visual and audio materials. This is not just the replacement of print materials with digital materials; it is the first time many schools and communities have access to an extensive collection of high-quality educational resources and an enormous library.

Students had an average of two to three hours per week with the MLLs; according to a timetable organized in each school. Usage records from the RACHELS indicate that between 11,000 and 44,000 pages were accessed in each school during the project.

The RACHELS used in this program contained the complete Guatemalan National Curriculum, as well as Spanish digital libraries, and the equivalent of an off-line Wikipedia. The prohibitive cost of providing access to this wealth of knowledge in rural, remote, and poor communities is made affordable by providing these resources in a digital off-line form rather than in a physical library or through a continuous connection to the worldwide web.

All (100%) of the teachers felt that the MLLs provided an excellent source of educational resources that they would not otherwise be able to offer their students. Teachers appreciated the access to a diversity of information sources, including visual and audio sources, which enabled students to do individual and group research, and offer students the option of following their own learning interests.

“It is a beautiful experience because it gives access to many subjects, it facilitates learning. It is a very open program for the learning of students of any grade, different content, books are structured for all levels; RACHEL is an effective tool for the student to learn effectively and the educator has access to facilitate the process of learning.” - Teacher, El Paraiso Primary School

For students, particularly those in higher grades, to learn to do research, and then synthesize and present information has been a valuable new opportunity.

“RACHEL is very important. With access to reference materials and the virtual library on RACHEL, we no longer have to do research on the internet. Being able to use RACHEL implies less economic expense. RACHEL contains all kinds of educational content, games, videos and everything that can help us learn so much.” - (Grade Seven Student, Taltimiche)

The majority (64%) of students interviewed in grades 6 and 7, felt the greatest advantage of the MLLs was the access to the libraries and resources on the RACHEL. Many mentioned the fact that this was free; because there are no libraries and is no general internet access in the rural communities, students must pay to utilize an internet café in the nearest centre when they are required to research and prepare for school assignments. For students from poor families, the free access to unlimited resources on the RACHEL was a tremendous benefit, and could make the difference between continuing and leaving school.

“It has been a good experience to use the technology and I like it because now I do not have to spend money to research my school assignments. I confess that before we had RACHEL, classes were a little boring, but now with the presence of the technology, that classes have become fascinating, very interesting, and more engaging.” - Student, Grade 7, Taltimiche

“RACHEL is very important, because now we do not need to go to do research at the internet café. This means that we have less economic expenses. RACHEL contains all types of educational content, games, and videos that can help us to learn a lot.” - Student, Grade 7, Canoa de Sal

“RACHEL has motivated me to continue studying and not drop out of school. It has taught me much mathematics and strengthened my writing and reading of texts through practice.” - Student, Grade 7, Taltimiche

Students interviewed indicated that they used the MLLs for the following subjects: communications and language: atomic syllables, discussion, classes of nouns, the media, learning, reading, writing, watching cartoons, researching jobs, games, adding, subtracting and multiplying activities, videos, songs, riddles, poems; natural sciences: cells, the nervous system and neurons; social sciences: culture of violence and culture of peace; math: Decimal numbers, fractions, multiplication, and division with decimals.

Of all the materials on the RACHEL for language learning, the students and teachers were the most familiar with Wikipedia, the Guatemalan Government Curriculum and the two Library Collections: Grandes Libros del Mundo and Biblioteca Latinoamericana. It is unclear if this familiarity is a reflection of just what they used the most in their classes or because these were the programs that were the most useful to them.

Of the materials on the RACHEL for math learning, students and teachers were most familiar with Ka-Lite and Aprendo Maties, and GFC Aprende Libre. Again, it is unclear if this familiarity is a reflection of just what they used the most in their classes or because these were the programs that were the most useful to them. Teachers found the inclusion of the full Guatemalan national curriculum to be particularly useful and easy to access, compared to the often out-dated, worn, and limited copies of the curriculum available in their schools.

Twenty-first Century Skills

The teachers and school principals noted that the RACHEL content included resources for “Twenty-First Century Skills” such as critical thinking, communication, collaboration, and creativity. Both the content and the act of using the technology facilitated the beginning of development of the so-called, Twenty-First Century Skills (see Graphic 5).

Students gained many learnings and experiences, and the same further and noted that the technology can also provide a new way of learning that: “liberates my imagination,” “enables me to create my own learning,” and “empowers me to create and share new knowledge.”

The following quotes illustrate this:

“I really like using the MLLs because I like to have opinions and motivate my classmates, and in this way to be able to develop my ability to manage technology.” - Student

“When I turned on the tablet and began to interact with it, I gained many learnings and experiences, and the same with my classmates. Then we shared new ideas that helped us have different points of view.” - Student

“To learn to operate the tablet has been a great experience for me and my classmates. With the use of the tablets, we have more opportunity to share ideas, feelings, and opinions in the educational context.” - Student

“I like to work with the RACHEL and tablets because we can construct our learning through videos, educational games, books, and other educational resources contained in the virtual library.” - Student

GRAPHIC 5: TWENTY-FIRST CENTURY SKILLS

| Critical Thinking: Information and discovery, reasoning, problem-solving, systems-thinking | Collaboration: Cooperation, flexibility, leadership, initiative |
| Communication: Effective listening, communication using digital media, engaging in discussions | Creativity: Idea generation, openness to explore, work creatively with others |
In order to maximize the potential of the technology in the classroom, and ultimately of student learning, teachers and administrators identified three areas in which teachers need training:

1) How to operate the technology confidently;
2) How to integrate technology into their existing lesson plans in innovative ways;
3) How to generate and share new knowledge.

However, the training and appropriation of technology for educational purposes are processes that require time and practice. These are not changes that can occur quickly, but rather, they are long-term processes that need continuous support, particularly as technology is constantly changing.

Most of the teachers have very limited previous experience with technology. While most have cell phones, the majority do not have smart phones, laptops or computers. Few have experience with using the internet or digital apps for research or educational purposes. In addition, while younger teachers are often more familiar with using technology, most older teachers have no experience and are hesitant to try. There is currently no support for teacher capacity-building in the use of technology by the Ministry of Education, either in basic teacher training or in on-going professional development programs. Thus, firstly, teachers need instruction in the use and maintenance of the equipment before they can effectively use it with their students.

Once teachers were somewhat comfortable and confident in their use of the equipment, they were able to begin to utilize the technological resources to improve their pedagogy practice. The RACHELs were useful to teachers preparing classes and enabled them to ensure that they had accurate information to share with their students. They explored the virtual library to get more information as needed for their lessons. For example, teachers indicated that they retrieved content on the following subjects: in mathematics, content on geometry, fractions, and algebra; in biology, content on physiology, zoology, and botany; in language arts, content on grammar, sentence construction, and synonym; and in English language instruction, content on vocabulary and pronunciation.

"Sometimes, I do not have all the information in the national curriculum for a topic that I have to teach to my students. Before I would be scrambling to find any information I could from friends, or other teachers. Now, I can look up additional information or explanations, and I can be sure that the information I share with my students is accurate." - Teacher, Tuxioquiel Junior High School

"I consulted the content on the MLL when I had to teach classes on types of triangles, living beings, the environment, multiplication and division." - Teacher, Chamaque Primary School

"Useful content on the MLLs are in physics, contents such as temperature, thermometer; in artistic expression, crafts and painting; and in chemistry, water and its components." - Teacher, Canoa de Sal, Tele-secondary school (Junior High)

All teachers (100%) felt that they needed further orientation and training to fully use the potential of the MLLs; they requested more training on how to integrate technology into their lessons; on specific subjects such as math, health, culture, and sciences. The School Principals also stressed the need for further capacity-building with teachers so that they can continue to improve the integration of technology into their lessons.

While digital literacy is not an element included in the original theoretical model from the Brookings Institute (Graphic 2), according to the participants in this Project, it is an essential comparative advantage, and needs to be highlighted in the model as well as intentionally integrated and developed in technology for education initiatives. While improved digital literacy may be an unintended side benefit of technology for education programs in upper-income countries, for marginalized communities in the Global South, this is vital to young people’s ability to survive and thrive in the globalized world.
08. INTEGRATING FAMILY, COMMUNITY, AND CULTURAL PERSPECTIVES AND KNOWLEDGE

An important element, not included in the original theoretical model (Graphic 4) used in this study is the role of families and communities, particularly in relation to the student, but which also affects relationships and interactions with teachers and content. This family and community context is particularly important in remote and marginalized communities, like the indigenous communities of Guatemala, because the social and cultural context may have a stronger effect on schooling and learning than in larger urban contexts with a wider range of social and cultural influences and norms.

The Project supports the existing research evidence that technology has comparative advantages for “integrating family, community and cultural perspectives and knowledge” (89) into education, particularly in remote, close-knit, or small-sized cultural and language communities. This is an advantage that permeates all aspects of the learning process (see Graphic 4).

Family Involvement in Education

Family and community support for education is critical to the success of students, especially those in marginalized communities. According to a recent study in indigenous communities in Canada, New Zealand, and Australia, the three key elements to improve indigenous education are: 1) quality and effectiveness of teaching; 2) engagement of families and communities, including involving parents in the children’s educational goals and enabling parents to play an active role in their children’s learning; and 3) provision of direct support to students (OECD, 2017).

Technology in the classroom not only generated motivation among the students to learn, but it also increased the interest of parents in their children’s education, as reported by project staff:

“The implementation of the MLLs in the schools motivated the parents to accompany and ensure the training of their sons and daughters by making constant visits to the establishments to verify the progress of the use of technology by the students in the classrooms. Fathers and mothers showed great interest in their sons’ and daughters’ learning the use of technology and tried to support their children in learning to use the MLLs. In the intervention schools, parents contributed with the purchase of materials to protect the technological equipment and reinforce the safety of the classrooms.”

- Project Staff member

Parental interest in the educational technology seems to stem from several factors: their desire for their children to be able to compete in the wider-world where digital knowledge and skills are a requirement; their hope that new and innovative investments in the local school will improve the quality of education in their community, and their desire to ensure that this new initiative is a success.

Community Cultural and Linguistic Content

The potential of technology to facilitate culturally and linguistically-specific knowledge and learning was explored in the Project. Small language groups and more traditional indigenous communities often maintain and communicate cultural knowledge through oral transmission, such as stories and songs, and experiential learning, such as working alongside an Elder. Technology has the capacity to capture and share cultural knowledge through audio, visual and interactive means. This is an opportunity to build on traditional ways of knowing and create an innovative path for knowledge transmission and strengthening.

Studies of indigenous education have identified the need for “decolonizing” learning processes and content and strengthening gender-equitable perspectives. This includes respecting indigenous knowledge and their unique approaches to learning, respecting indigenous holistic vision/perspectives, integrating indigenous and local community content, and reducing gender-based barriers to education. In many ways, there are parallels between indigenous ways of learning and innovative learning approaches currently in mainstream education. These include such congruent elements as: experiential learning, critical thinking, self-directed learning, and drawing from community contexts to create relevant and engaging curriculum. Research in Latin American indigenous education programs also highlights the importance of upgrading educational resources and teacher capacity, and the need for engagement of families, communities, and social movements related to human rights, cultural identity, and respect for diversity to provide the context in which indigenous education can flourish.

The government of Guatemala has been committed to bilingual/intercultural education for more than 40 years, however, given the diversity of cultural and language groups, it has been a challenge to achieve the goal of high-quality bilingual and intercultural education for the twenty-one Mayan languages spoken in Guatemala. Mam, the language spoken in the Municipality of Comitancillo, is the fourth largest, with about 500,000 speakers. Many of the students in the rural communities of the Municipality of Comitancillo start school only speaking Mam, and they begin to learn Spanish, the predominant language of education, during primary school. While the majority of teachers in Comitancillo are bilingual Mam-Spanish speakers, there is a lack of resource materials for teaching Mam language and culture.

The MLLs offer the opportunity for teachers, students, and community members to create, upload and share educational resources for teaching the Mam language and culture. During the Project, a total of 134 documents and educational resources of culturally and linguistically-specific Maya-Mam content (Annex 2), including Mam language learning materials, information on local culture and history, and research studies on the community were uploaded to RACHEL.

All teachers received about two hours of instruction on the Maya-Mam materials and potential ways of using these. All teachers reported using the new content, particularly for teaching Mam reading and writing. For younger grades, they especially liked the printable words in Mam and Spanish that they could place around the classroom on various objects. For the Junior High students, they appreciated the reference information about their own community, such as the research studies of various social, economic and cultural aspects of Comitancillo.

Teachers and students noted that the Mam materials were relevant and of good quality. However, at present, they are all PDF documents; the full potential of the technology to be used for audio, visual, and video formats has not yet been developed in the Project region. In the future, teachers and students would like to experiment making video and audio recordings, as well as creating more interactive educational materials.
As noted in the Methodology Section, the total number of grade six and seven students was 512 in the 20 schools in 2019: 269 in the intervention schools and 243 in the control schools. A sample size of 200 students was selected from the 20 schools; that is, a random sub-sample of 10 students from each school. A total of 193 students completed the pre-test and 192 students completed the post-test.

The tests administered were the Official Grade 6 national exams of the Ministry of Education of Guatemala for assessing learning based on the National Curriculum. The Reading test included elements of recognition, memory, utilization, comprehension, and analysis for reading in Spanish at a Grade 6 level. The mathematics test for Grade 6 assessed learning in probability, geometry, simple and complex numbers, problems with natural numbers, fractions, and decimals, percentage, measurements, money, and problem solving.

Table 3 outlines the results of the pre and post-tests in the intervention and control schools, demonstrating a lack of any statistically significant difference between the two groups. The research group did a detailed analysis of the performance of the students in the various components of the test, without finding any significant difference in any of the components. In fact, in mathematics, both grades in the control schools showed greater improvement over the nine-month period than the intervention schools. Only in the case of Grade 7 Reading test did the students Intervention Schools show a greater, and statistically significant different improvement over the students in the Control Schools.

Two observations are necessary when assessing these disappointing results: one related to the length of the study, and the second related to the national educational context.

As noted earlier, the length of time of the intervention was not enough to see a significant change in student learning outcomes. The school closures in March 2020 due to the global pandemic shortened the study from two years (2019-2020), to only gathering data from one year (9 months) of classes (2019).

As noted in other studies, it is unlikely that significant changes in student learning outcomes will be evident within a one-year period. In a study conducted in 2018 of a Mundo Posible project elsewhere in Guatemala of student performance in reading and math in eight intervention and eight control schools after one year of implementation, showed improved performance of students with access to technology at a rate that was statistically significant but not to a level of 95% confidence. xx

In another example, a large-scale randomized evaluation of the One Laptop per Child program in Peru was conducted in 2011, using data collected after 15 months of implementation in 319 primary schools in rural areas of the country (BID, 2012). xx ‘The results indicated that the program increased the number of computers per student from 0.12 to 1.18 in the beneficiary schools. This expansion in access resulted in a considerable increase in the use of computers both at school and at home. There was no evidence of effects on enrollment or academic performance in math and language’ (BID 2012, p. 4). However, the study did find some positive effects in general cognitive abilities that provided evidence of possible advantages and potentially longer-term impacts on learning outcomes, if students and teachers have the proper support.

The second observation that must be highlighted is the overall low scores. These Comitancillo students are achieving between 28% and 34% on national exams on which they would be ideally earning marks over 60% at the end of the school year when they have completed the curriculum of studies. Overall in Guatemala, the most recent evaluations of grade six students indicate that only 29% passed the reading exams, and 45% passed the math exams for that grade. xxii Thus, the Comitancillo student performance is similar to the rest of the country, and reflects the generally poor quality of education in Guatemala.

TABLE 3: AVERAGE PERCENTAGE SCORES ON PRE AND POST-TESTS

<table>
<thead>
<tr>
<th></th>
<th>Reading Spanish</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (Mean) Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-test</td>
<td>Post-test</td>
</tr>
<tr>
<td>Gr. 6 Intervention Schools</td>
<td>32.89</td>
<td>32.06</td>
</tr>
<tr>
<td>Gr. 6 Control Schools</td>
<td>29.32</td>
<td>28.57</td>
</tr>
<tr>
<td>Gr 7 Intervention Schools</td>
<td>29.40</td>
<td>34.08</td>
</tr>
<tr>
<td>Gr. 7 Control Schools</td>
<td>30.95</td>
<td>33.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Difference</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr. 6 Intervention Schools</td>
<td>32.38</td>
<td>29.92</td>
<td>-0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. 6 Control Schools</td>
<td>21.25</td>
<td>24.79</td>
<td>+3.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr 7 Intervention Schools</td>
<td>31.67</td>
<td>31.67</td>
<td>+1.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. 7 Control Schools</td>
<td>28.2</td>
<td>31.12</td>
<td>+3.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student learning is an outcome of the interaction of content, teachers and students, according to the theoretical model used to assess this Project. Therefore, there are three ways to improve student learning at scale: 1) improve the quality of the content that students are asked to learn; 2) enhance teachers’ knowledge and skills; and 3) increase students’ engagement in their own learning. Changes in any one of these components necessitates and generates changes in the other two. This project has strengthened and enlarged the evidence-base which indicates that appropriate educational technology can contribute to improvement in all three of these components and thus ultimately increase student learning (Graphic 6).

Graph 6: The Project Theory of Change

Despite the shortened length of the Project due to school closures as a result of the COVID-19 pandemic, the findings of the research study indicated that the comparative advantages identified in existing research had potential to improve student learning in this context as well. The technology showed promise in:

1) Scaling up standardized instruction;
2) Facilitating differentiated instruction;
3) Expanding opportunities for practice;
4) Increasing learning engagement.

In addition, the research identified further ways that the technology could potentially facilitate improved student learning outcomes:

5) Free access to high-quality resources;
6) Teacher capacity-building;
7) Student learning to use technology;
8) Creating and sharing family, community, and cultural knowledge and engagement.

While these additional advantages, such as free access to resources and development of digital literacy may seem obvious or immaterial in many global contexts, for marginal indigenous communities, these are potentially ground-breaking and transformative. These elements need to be identified, highlighted and intentionally developed in theoretical models and in the implementation of educational technology programs.

Recommendations for a next stage of implementation of MILs in the classroom:
• Offer more and on-going training for teachers on how to integrate technology into their lessons in creative and engaging ways that are student-centered;
• Include intentional training for students on how to use and manage both hardware and software to build digital and technological knowledge and skills;
• Extend after-school opportunities for students to use the technology for homework assignments, research and personal interest;
• Develop the student and community ability to create and share more community and cultural educational resources;
• Work closely with local, regional, and national education authorities to develop and implement technology programs so that initiatives are sustainable and closely integrated into national planning and curriculums.

Recommendations for further impact research:
• Utilize context-specific learning outcome evaluations rather than standardized national tests to assess student learning results;
• Investigate further the differential experiences of girls and boys, teachers and administrators, and according to grade level in the use of technology;
• Undertake a longitudinal study which follows the experience and learning results over the course of at least three-years of full implementation.

Free access to educational resources and development of digital literacy may seem like obvious or unimportant outcomes of technology in the classroom in Canada and other higher-income countries. However, for marginalized and economically-deprived communities around the world, access to resources and digital literacy can be ground-breaking and transformative.

All the participating students, teachers, and school administrators felt that there should be continued implementation of the MILs in their schools because it motivates and improves their ability to learn.
END NOTES

5 IDRA, SUMMA, OECS (2020). “Expanding the right to education in Central America and the Caribbean: Challenges and priorities in educational policy.” Summary of Report: Educational Challenges in LAC.
6 World Bank, 2016 p. 9
8 World Bank, 2016, p. 5.